STAT1 deficiency redirects IFN signalling toward suppression of TLR response through a feedback activation of STAT3
نویسندگان
چکیده
Interferons (IFNs) potentiate macrophage activation typically via a STAT1-dependent pathway. Recent studies suggest a functioning of STAT1-independent pathway in the regulation of gene expression by IFN-γ, thus pointing to the diversity in cellular responses to IFNs. Many functions of IFNs rely on cross-regulation of the responses to exogenous inflammatory mediators such as TLR ligands. Here we investigated the contribution of STAT1-independent pathway to macrophage activation and its underlying mechanism in the context of combined stimulation of IFN and TLR. We found that TLR-induced production of inflammatory cytokines (TNF-α, IL-12) was not simply nullified but was significantly suppressed by signaling common to IFN-γ and IFN-β in STAT1-null macrophages. Such a shift in the suppression of TLR response correlated with a sustained STAT3 activation and attenuation of NF-κB signaling. Using a JAK2/STAT3 pathway inhibitor or STAT3-specific siRNA, blocking STAT3 in that context restored TNF-α production and NF-κB signaling, thus indicating a functional cross-regulation among STAT1, STAT3, and NF-κB. Our results suggest that STAT1 deficiency reprograms IFN signaling from priming toward suppression of TLR response via feedback regulation of STAT3, which may provide a new insight into the host defense response against microbial pathogens in a situation of STAT1 deficiency.
منابع مشابه
Interferon-γ inhibits interferon-α signalling in hepatic cells: evidence for the involvement of STAT1 induction and hyperexpression of STAT1 in chronic hepatitis C
IFN-γ (interferon-γ ) modulates IFN-α therapy in chronic hepatitis C infection; however, the underlying mechanism remains unclear. Here we demonstrate that long-term (3–6 days) but not short-term (up to 1 day) IFN-γ treatment of human hepatoma Hep3B cells attenuates IFN-α activation of STAT1 (signal transducers and activators of transcription factor 1), STAT2 and STAT3, but enhances IFN-γ and i...
متن کاملOpposing roles of STAT1 and STAT3 in T cell-mediated hepatitis: regulation by SOCS.
T cell-mediated fulminant hepatitis is a life-threatening event for which the underlying mechanism is not fully understood. Injection of concanavalin A (Con A) into mice recapitulates the histological and pathological sequelae of T cell-mediated hepatitis. In this model, both signal transducer and activator of transcription factor 1 (STAT1) and STAT3 are activated in the liver. Disruption of th...
متن کاملIFN-Mediated Antiviral Response STAT3 Negatively Regulates Type I
Type I IFNs are crucial cytokines of innate immunity for combating viral infections. Signaling through type I IFN receptors triggers the activation of STAT proteins, including STAT1, STAT2, and STAT3. Although an essential role of STAT1 and STAT2 for type I IFN-induced antiviral response has been well established by studies of gene-targeted mice and human mutations, the role of STAT3 for this r...
متن کاملDysregulation of the IFN-γ-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia
T cell large granular lymphocyte leukemia (T-LGLL) is a rare incurable disease that is characterized by defective apoptosis of cytotoxic CD8+ T cells. Chronic activation of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a hallmark of T-LGLL. One manifestation is the constitutive phosphorylation of tyrosine 701 of STAT1 (p-STAT1). T-LGLL patients also exh...
متن کاملInterferon Potentiates Toll-Like Receptor-Induced Prostaglandin D2 Production through Positive Feedback Regulation between Signal Transducer and Activators of Transcription 1 and Reactive Oxygen Species
Prostaglandin D2 (PGD2) is a potent lipid mediator that controls inflammation, and its dysregulation has been implicated in diverse inflammatory disorders. Despite significant progress made in understanding the role of PGD2 as a key regulator of immune responses, the molecular mechanism underlying PGD2 production remains unclear, particularly upon challenge with different and multiple inflammat...
متن کامل